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Free-surface flow over a semicircular obstruction, 
including the influence of gravity and surface tension 
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A previous study by Forbes & Schwartz (1982) on flow under gravity of a fluid over 
a submerged semicircular disturbance is generalized to include the effects of surface 
tension. A linearized theory is presented, in which the existence of three different 
branches of solution is predicted. The solution of the fully nonlinear problem by a 
boundary-integral technique supports this prediction. The wave resistance experi- 
enced by the obstacle is computed for the linearized and nonlinear theories. 

1. Introduction 
The flow of an ideal fluid with a free surface over a submerged semicircular cylinder 

affixed to the bed of a running stream was recently considered by Forbes & Schwartz 
(1982). A linearized theory was developed for the case in which the radius of the 
disturbing semicircular cylinder is small, whilst for cylinders of arbitrary radius, the 
solution of the fully nonlinear problem was effected utilizing an efficient boundary- 
integral technique. Both the linearized and nonlinear results indicated the existence 
of two different branches of solution to this problem, although in the nonlincar case 
these two branches may possibly overlap, so that for certain values of the upstream 
Froude number either type of solution is a likely outcome. 

Fluid flow over various bottom topographies has attracted considerable attention 
throughout the history of fluid mechanics, and the literature on the topic is extensive. 
Lamb (1932, p. 409) presents a general linearized theory for flow over stream beds 
of 'arbitrary' shape; however, i t  was pointed out by Forbes & Schwartz (1982) that  
Lamb's theory ceases to be valid when stagnation points are present on the bottom, 
since the assumptions of the theory are violated a t  these points. This theory is 
reviewed by Wehausen & Laitone (1960, p. 569), who also discuss free-surface flow 
over a step discontinuiby in the stream bed. More recently, a linearized theory for 
flow over certain bottom profiles was developed by Gazdar (1973). 

Nonlinear potential flows over bottom-mounted obstacles, in the absence of surface 
tension, have also been considered recently. Forbes (1981 a, b )  investigated the flow 
over a submerged semi-elliptical body, and demonstrated that the nonlinear drag 
force on the obstacle could be made to vanish for special body shapes in subcritical 
flow. Aitchison (1979) employed a variable finite-element technique to solve for flow 
over a triangular weir. I n  addition to the two nonlinear branches of solution 
obtained by Forbes & Schwartz (1982), she obtained a third nonlinear family of 
solutions, in which the flow upstream of the obstacle is subcritical, but becomes 
supercritical downstream. The finite-difference scheme employed by von Kerczek & 
Salvesen (1977) and the boundary-fitting finite-difference schemes of Haussling & 
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Coleman (1977) and Shanks & Thompson (1977) may presumably also be applied to 
the solution of flow problems involving irregular bottom topographies, although this 
does not yet appear to have been attempted. 

In  addition to work on nonlinear wave motion under the influence of gravity, surh 
as the investigations of Schwartz (1974) and Cokelet (l977), there is currently 
considerable interest in nonlinear wave motion under the combined effects of gravity 
and surface tension. Schwartz & Vanden Broeck (1979) solved this problem using a 
boundary-integral technique, and investigated the role of ' Wilton's ripples ' in the 
mathematical structure of the solution. Their results indicate the existence of 
apparently infinitely many families of solutions to this problem, where the free 
surface for solutions of a particular family type possesses a characteristic number of 
surface-tension ripples 'riding ' on the overall wave profile. Alternative analyses of 
this problem have been undertaken by Hogan (1979,1980) and Chen & Saffman (1979, 
1980). 

In  the present paper we consider the nonlinear problem of fluid flow over a 
semicircular cylinder attached to the bed of a running stream, when both gravity and 
surface tension are present. The problem is formulated and solved, as in Forbes & 
Schwartz (1982), utilizing a boundary-integral technique in an inverse plane in which 
the velocity potential and stream function are the independent variables. A 
preliminary conformal mapping is performed, which both ensures that the fluid 
behaviour at the two stagnation points on the semicircular cylinder is correctly 
represented, and eliminates the necessity to place numerical grid points along the 
bottom. The nonlinear results discussed in this paper summarize the outcomes of 
approximately 200: numerically computed free-surface profiles ; this is by no means 
sufficient to completely describe the properties of the solutions to this problem, 
although some general trends may be observed. 

2. Formulation 
Consider steady, two-dimensional flow of an ideal fluid in a stream in which has 

been placed a semicircular cylinder of radius R,, with its centre a t  the"origin of a 
coordinate system in'which the y-axis points vertically. In  the absence of surface 
tension, the flow far upstream is uniform with velocity c in the positive x-direction, 
and depth H .  The surface tension of the fluid is r ,  and g is the downward acceleration 
due to  gravity.t 

Dimensionless variables are defined by referring all lengths to the quantity H ,  and 
all velocities to c .  The velocity potential C#J and stream function $ are normalized with 
respect to the product cH,  so that the bottom is the streamline $ = 0 and the sur- 
face is $ = I ,  in dimensionless variables. The noC-dimensional flow is depicted in 
figure 1. 

The three dimensionless parameters of the problem are the depth-based Froude 
number 

the dimensionless circle radius 
F = c / ( g H ) t ,  

a = R,/H, 
and the surface-tension number 

where p is the density of the fluid. 

t When surface tension is present, a wavetrain mhy appear upstream of the semicircle. In this 
case the reference speed c and depth H are defined a t  poipts of zero curvature of the free surface 
far upstream, by ( 2 . 2 ) .  

T = r/pgH2, 
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FIQURE 1. The non-dimensional flow situation and coordinates in the z-plane. 

Since the fluid is incompressible and flows irrotationally, i t  follows that the 
quantities g5 and 1c, obey the Cauchy-Riemann equations in the fluid interior. The 
complex variable f = g 5 + $  may therefore be expressed as an analytic function of 
the variable z = x+ iy .  The conjugate complex velocity w is defined by the expression 

where u and v are respectively the horizontal and vertical components of the velocity 
vector. 

The requirement that  there be no flow normal to the bottom streamline y = h(x)  
results in the equation 

dh 
dx u- = v on y = h(x) ,  (2.1) 

where 

At the free surface of the fluid the Bernoulli equation may be written 
m 

where R is the local radius of curvature of the surface and is defined as 

Here s is the arclength along the surface, so that ds2 = dx2+dy2. 
Following Forbes & Schwartz (1982), the problem is reformulated in a <-plane, in 

which the bottom is simply a straight line, free of stagnation points. The new variable 
5 = E+iy is related to  z = x+iy by the Joukowski transformation 

z = c+ (6-a”i. (2.3) 

In the 5-plane the bottom condition (2.1) takes the simple form 

# , = O  on q = O ,  (2.4) 
10-2 
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where the subscript denotes partial differentiation. The Bernoulli equation (2.2) at  
the free surface may be written 

(z"a2) (22- 
QF2 (2Z)Z  a ) ($e +$;) + Im { z } - $ F 2 -  1 

The bars denote complex conjugation. 
Finally, the roles of the variables f and [ are interchanged, so that the quantity 

5 = g+iq is sought as an analytic function of the independent variable f = $+$. 
This transformation, due to  Stokes (1880), simplifies the problem to the extent that 
the free surface in the f-plane has the known location 11. = 1 ,  although its position 
in the [-plane is unknown. 

I n  the f-plane the bottom condition (2.4) becomes 

q = O  on @ = O ,  (2.6) 

and the Bernoulli equation (2.5) takes the form 

The function z ( [ )  may be obtained from (2.3). 
Equation (2.7) provides one relation between the real and imaginary parts of the 

function [(f) a t  the free surface @ = 1 .  A second relation between them has been 
derived by Forbes & Schwartz (1982) using the Cauchy Integral Theorem. Thus 

Equation (2.8) is a consequence of the analyticity of the function [( f ), and includes 
the bottom condition (2.6) implicitly. 

In  order to specify the problem completely, some knowledge of the solution 
infinitely far upstream must be assumed. In  the absence of surface tension, this 
reduces to the radiation condition 

< + S f  as $+-a. (2.9) 

The more general case in which surface tension is present will be discussed in $5. 
The free-surface profile is thus obtained parametrically in the form (g($, l ) ,  y($, 1 ) )  

by the solution of (2.7) and (2.8), together with a condition of the type (2.9). The 
original variables x and y are then recovered from (2.3). 
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The drag force D acting per unit length of the semicircular cylinder is calculated 
by integrating the pressure p across its surface. Here p and D have been made 
dimensionless by reference to  the quantities pgH and pgH2 respectively. Thus 

In the [-plane this equation becomes 

When transformed into the f-plane, (2.10) takes the form 

(2.10) 

(2.11) 

where the quantities - are the solutions to  the equations 

5(4+,,0) = fa. (2.12) 

The function [($, 0) a t  the bottom $ = 0 is obtained from the previously computed 
solution g( 4, 1)  a t  the free surface by means of the Cauchy Integral Theorem. 

3. The linearized solution 
When the square of the circle radius, a2, is a small quantity, a linearized theory 

may be developed by expanding the solution [( f )  in the regular perturbation series 

y( f )  = +f+a2F1(f)+O(a4).  (3.1) 

Equation (3.1) is substituted into the full nonlinear equations of motion, and only 
terms of first order in a2 are retained. Thus the Bernoulli equation (2.7) yields the 
linearized free-surface condition 

1 -342 1 - 4 2  1 1 } = T ( 4 2  + 1)3+:F2 +-- on I)= 1. (p+ 1 ) Z  2 $h2+ 1 
13.2) 

The solution is sought as a Fourier transform, with the integrand chosen to satisfy 
the bottom condition Im{Fl} = 0 on $ = 0. Thus 

The real function C ( K )  is determined by substitution into (3.2), and may be written 

1 e - K ( T K 2 + F 2 K +  1) 
2 K F ~  cosh K -  (1 + K ~ T )  sinh K ' 

C ( K )  = - 

It is evident that  the function C(K)  may become singular a t  a maximum of two 
positive real values of K .  Let these values be K,, and K ~ ,  and define K~ < K~ ; then K~ 

and K~ are the solutions to the dispersion relation 

d(lci)= (1+KtT)tanhKi-KICiF2=0 ( i = O ,  1). (3.4) 

If either K~ or K~ exists, the function Fl(f) in (3.3) becomes indeterminate, since the 
integral on the right-hand side of this equation fails to have meaning in the usual 
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sense. In  this case the integral is interpreted as a contour integral in the complex 
K-plane, with the path of integration passing below the pole singularity a t  K~ and 
above the singularity a t  K~ in semicircles of vanishingly small radius. The solution 
(3 .1)  may therefore be written 

e-"(TKZ+F2K+ 1)sinKf 
K F ~  cosh K - ( 1  + K ~ T )  sinh K 

d K  

When either K~ or K~ fails to exist, the term involving that quantity should be omitted 
from (3 .5) .  

Three distinct, different branches of solution are predicted by the linearized theory, 
and for convenience will be referred to in this paper as solutions of types 1 ,  2 and 
3.  Solutions of type 1 exist only when F < 1 ,  and possess a train of gravity waves 
downstream, and capillary waves upstream of the semicircle, since both K~ and K~ exist 
in this case. Solutions of type 2 occur a t  large values of the surface-tension parameter 
T ,  and are also confined to the subcritical regime F < 1 .  In  this case, however, there 
are no waves either upstream or downstream of the semicircle, and the free surface 
is symmetric about the y-axis and possesses a local depression above the semicircle, 
since neither K~ nor K~ exist. Type 3 solutions occur only in the supercritical regime 
F > 1, and the transcendental equation (3 .4)  possesses the single real root K~ for these 
solutions. Thus, the free surface consists of a train of capillary waves upstream 
followed by a rise above the semicircular obstruction. 

The regions in the parameter space (F, T )  in which the various branches of the 
linearized solution exist are sketched in figure 2. The solid curves in this diagram are 
the boundaries between regions in which different solution types occur. There is no 
solution when the parameters F and T describe a point on these curves, since the 
two roots of the transcendental equation (3 .4)  coalesce, so that K~ = K~ = K * ,  and the 
integral in (3 .5)  fails to exist. The location of these curves is found by solving the 
system of equations 

d ( ~ * )  = ( 1  + K * ~ T )  tanh K* - K * F ~  = 0, 

d'(lc*) = ~ K * T  tanh K* + (1 + K * ~ T )  sech2 K* - FZ = 0. 

These equations enable the quantities K* and T to be obtained for a particular value 
of F .  

The drag force D experienced by the semicircular obstruction is calculated for the 
linearized solution by inverting (3.5), to obtain a relation of the form f (C ) ,  and then 
substituting into (2.10). This results in the expression 

The quantities A!+) and A$-) are the linearized amplitudes of the wavetrains far 
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FIGURE 2. The regions in which the three branches of the linearized solution exist. 
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downstream and far upstream respectively, when these exist. Their values may be 
obtained from (3.5) by means of the usual asymptotic analysis. Thus for solutions 
of type 1 y-, i - A { + ) s i n ~ ~ z + O ( a ~ )  as z++oo, 

cosh K 
K2F2(F2 1 + K ~ T  - 2T)1 Al(K) = 

[ F 2 - ( l + K 2 T ) +  

As the boundary between solutions of type 1 and type 2 shown in figure 2 is 
approached, the two wavenumbers K,, and K~ coalesce, and the wave amplitudes A$+) 
and A{-) both become infinite. The drag D also becomesunbounded when K~ = K~ = K*, 
but drops abruptly to zero for solutions of type 2, since in this case there are no waves 
formed in the far field. 

4. Numerical methods 
The numerical scheme for the solution of the nonlinear system of equations (2.7) 

and (2.8), together with a relation of the form (2.9), a t  the N + 1  equally spaced 
free-surface points $o,  $ l , .  . ., $ N  has been described in principle by Forbes & 
Schwartz (1982). Accordingly, only a brief outline of the process need be provided 
here. 

To begin, the integrodifferential equation (2.8) is truncated upstream and down- 
stream a t  the points $o and $ N .  The treatment of the Cauchy principal-value integral 
is standard, and consists of rendering the integral non-singular by subtracting the 
singular part and integrating i t  explicitly. In  order to satisfy an upstream condition 
of the type (2.9) i t  is assumed that the values of all the flow variables are given at 
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the first point #o;  usually the quantities ko,  qo. 7;, 6; and 7: are taken from the 
linearized solution, and the Bernoulli equation a t  the first point gives 6;. The 
integrodifferential equation is evaluated at the midpoints q5k+ k = 1, . . . , N ,  and the 
integrals are approximated using Simpson’s rule. After interpolation and the 
inversion of a matrix, a linear system of the form 

N 

is obtained, where the constants H i j ,  i = 1 ,  ..., N ,  j = 1 ,  ..., N + 2  are all known. 
are assumed known, Gregory’s Rule 

integration is used to obtain the values of 6 and 7 a t  the free-surface points. For 
Since all the flow quantities a t  the first point 

example N 

& = & + Z a a i j 6 i  ( i = l ,  ..., N ) .  (4.2) 
j=o  

Lagrangian five-point differentiation formulae are used to  obtain the second deriv- 
atives and 7”. Thus 

N 

for suitable weights a,,, b,]. Similar formulae hold for the computation of 7 and 7” 
a t  the free-surface points. 

. . ., q5N, yields a system 
of N nonlinear algebraic equations of the form 

The Bernoulli equation (2.7), evaluated a t  the points 

p z ( T / ; ,  ..., 7;) = o  (i = 1 ,  ..., N ) ,  (4.4) 

where the functions 6 ,  7, c, r ,  7” have been eliminated in favour of values of 7‘ a t  
the indicated free-surface points by means of (4.1)-(4,3). The functions P, are the 
residual surface pressures a t  the points #%, i = 1 , .  . ., N .  Equations (4.4) are solved 
by a Newton-Raphson process, using forward differences to approximate the 
derivatives in the Jacobian matrix. With N = 130 a converged nonlinear solution is 
usually obtained from the linearized result in about five iterations. Occasionally, 
however, it is necessary to use a previously computed nonlinear solution as the 
starting guess in the Newton scheme, in order to  obtain convergence. 

Once the solution is known a t  the free surface $ = 1, the drag D may be computed 
using Cauchy’s lntegral Theorem to generate values off a t  the bottom $ = 0. These 
values are integrated to obtain 6, and (2.12) are solved using cubic spline interpolation 
and Newton’s method. The drag D is then found from (2.11) by Simpson’s Rule 
integration. 

5. Presentation of results 
5.1. Solutions of type 1 

Three nonlinear solutions of type 1 have been computed for F = 0.8, a = 0.05 and 
are shown in figure 3. As the surface-tension parameter T is increased, the wavelength 
of the downstream waves decreases significantly. This result is also predicted by 
the linearized solution, since K~ increases with increasing T.  The amplitude of the 
upstream and downstream waves increases with increasing T ,  as is the case for 
the linearized solution ; however, unlike the linearized solution, the mean free- 
surface level for the nonlinear downstream wavetrains shown in figure 3 evidently 
lowers as T is made larger. 
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FIGURE 3. Three nonlinear solutions of type 1 ,  for F = 0 8  and a = 005. Results are shown for the 
three values of the surface-tension parameter T = 0, 003  and 007. 

The problems associated with the computation of nonlinear free-surface profiles by 
the present method in the absence of surface tension (T = 0) have been described 
previously by Forbes & Schwartz (1982). I n  general i t  is found that the truncation of 
the integrodifferential equation downstream a t  the last point q5N results in an 
unimportant error which affects only the last quarter wavelength or so downstream. 
The upstream truncation a t  g5 = g50 and the subsequent imposition of the radiation 
condition (2.9) there gives rise to a spurious upstream wavetrain of small amplitude. 
By specifying the ‘correct’ values of qo, to, etc. to be imposed there, this spurious 
wavetrain may be eliminated ; in particular, nonlinear effects evidently result in a 
local rise in the free-surface level ahead of the obstacle, so that, by increasing the value 
of yo slightly above the value suggested by (2.9), the amplitude of the spurious 
upstream waves may be made very small indeed. This procedure was adopted to 
eliminate almost completely the spurious upstream waves for the T = 0 case shown 
in figure 3. 

Although the numerical problems associated with the upstream and downstream 
truncation of the integrodifferential equation (2.8) have been successfully overcome 
for the special case T = 0 as described above, this truncation becomes an important 
concern in the computation of the general solution of type 1 in which surface tension 
is present. As T is increased, the portion of the downstream wavetrain affected by 
the downstream truncation becomes greater. Thus for the solution with T = 0.03 
shown in figure 3, the last wavelength downstream is in error. For T = 0.07, which 
is the largest value of T for which Newton’s method converged, the error extends 
over the last two wavelengths downstream. The upstream truncation is also of 
concern, since the behaviour of { ( f )  as q5 + - co is not known, so that the values of 
the flow variables to  be imposed a t  q5 = #o are unclear. Of course, this information 
could be obtained by continuing the series expansion (3.1) out to higher orders in 
a2; however, this would appear to  be a prohibitively complicated process, and no 
attempt has been made to pursue this further. For the solutions shown in figure 3, 
the value of qo imposed a t  the first point q50 was chosen to  be that value which 
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eliminated the spurious upstream waves for the T = 0 case. The values of the 
quantities to, &,, and q: were taken from the linearized solution, and <A was then 
found from the Bernoulli equation. Despite the obvious shortcomings of this 
approximation, free-surface profiles are nevertheless obtained which are reasonably 
insensitive to the positions of the truncation boundaries and to further reductions 
in the spacing between free-surface points. 

The drag on the semicircle as a function of the surface-tension parameter T is shown 
in figure 4, for the same values of Froude number and semicircle radius as in figure 
3. The linearized result, calculated from (3.6), is shown as a solid curve, and the points 
are the values of the drag determined from converged nonlinear free-surface profiles 
by the method described a t  the end of $4. The linearized and nonlinear results agree 
closely over the entire range of values of T for which Newton's method converged. 
The slight scatter in the nonlinear values about the linearized result at the larger 
values of T is undoubtedly a consequence of numerical errors of the type described 
above, which become more severe as T is increased. 

Figure 5 shows the values of a and T for which linearized solutions of types 1 and 
2 exist, and nonlinear solutions of both types may be found by the present method, 
when F = 0.5. I n  the linearized theory, solutions of type 1 are predicted in the region 
to the left of the dashed line at T = 00156, and solutions of type 2 are predicted for 
T > 0.0156. When T = 0.0156, there is no solution. This linearized theory is only 
strictly valid as a --t 0, so that the vertical axis in figure 5 indicates the effects of 
nonlinearity directly. 

The values of a and T for which nonlinear solutions may be obtained appear to 
be restricted to values lying roughly within the regions bounded by the solid lines 
sketched in figure 5. Nonlinear solutions of type 1 are thus confined to  the 
approximately triangular-shaped region in the bottom left-hand corner of figure 5. 
The six points within this region represent the largest values of T for which Newton's 
method converged to a nonlinear solution of type 1 ,  for six different values of a. 
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Nonlinear type 2 solutions, to be discussed later, appear to exist only in the region 
to the right of the second solid line in figure 5 ; the six points within this region indicate 
the smallest values of T for which Newton’s method converged. In view of the 
relatively small number of free-surface points (about 20 points per wave cycle) to 
which we are restricted by the storage limits of the computer, it  has not been possible 
to determine the nature of the physical processes responsible for limiting the size of 
the region in figure 5 within which solutions of type 1 exist, since Newton’s method 
fails to converge when the curvature of the free surface becomes too great. 

In  figure 6 the dependence of the drag upon the surface-tension parameter T is 
shown for a semicircle of radius a = 005 in a flow with F = 0.5. The linearized result, 
shown as a solid curve, indicates a monotonic decrease in the drag as T is increased, 
followed by an abrupt rise near the critical value T = 00156. The nonlinear results 
suggest a slight increase in drag with increasing T, followed by a region in which the 
drag decreases. Newton’s method fails to converge a t  a value of T considerably 
smaller than the critical value T = 0.0156 for the linearized solution, and the 
nonlinear results also indicate an abrupt rise in the drag at this value of T. 

5.2. Solutions of type 2 

According to the linearized theory, solutions of type 2 are predicted to occur in 
subcritical flow (F < 1) when the surface-tension parameter T exceeds a certain 
critical value (see figure 2). The free surface is symmetric about z = 0, and consists 
of a single depression above the semicircle. 

The values of T for which nonlinear solutions of type 2 may be found have been 
presented in figure 5 ,  for F = 0.5. For a 2 0.05, nonlinear solutions appear to exist 
only in the region to the right of the line sketched on the figure. When 0 < a < 0.05, 
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FIGURE 6. Drag as a function of surface-tension parameter T, when F = 0 5  and a = 0-05. The 
smooth curve is the linearized result, and the points denote nonlinear values. 

however, the situation is possibly of greater interest. Here, our numerical method 
failed to converge to a nonlinear solution of type 2 for T < 0.0156, which is the critical 
value for the linearized solution. However, numerical errors due to the truncation 
of the integrodifferential equation (2.8) downstream at the point # N  become very 
large for type 2 solutions as T -+ 0.0156, and may perhaps prevent the convergence 
of Newton’s method for T < 00156. The possibility that nonlinear solutions of type 
2 might exist for T < 0.0156 certainly cannot be dismissed, so that, in a portion of 
the parameter space shown in figure 5,  nonlinear solutions of types 1 and 2 might 
perhaps exist simultaneously. Such a lack of uniqueness in the solutions to this 
problem would be similar to  the situation described by Forbes & Schwartz (1982). 

The shape of the free surface for two nonlinear solutions of type 2, obtained with 
P = 0 5  and a = 017, is shown in figure 7. The upward inflexion in the free-surface 
profile at x z 6 for the T = 0.2 case is a numerical error caused by the downstream 
truncation of the integrodifferential equation a t  = # N .  The solution for T = 0061 
exhibits a much sharper trough a t  x = 0 than occurs a t  T = 0.2, and represents the 
smallest value of T for which Newton’s method converged to a nonlinear type 2 
solution. Again, the physical process responsible for the failure of Newton’s method 
for type 2 solutions with T < 0.061 is not clear from our results, but is presumably 
related to the large curvature a t  the trough. It is possible that the free surface might 
enclose a bubble a t  the trough for T z 0.06. 

5.3. Solutions of type 3 
Nonlinear solutions of type 3 in the absence of surface tension have been discussed 
in detail by Forbes & Schwartz (1982). They occur in a portion of the supercritical 
flow regime F > 1,  the extent of which depends upon the circle radius a,  and the 
free-surface profile consists of a single elevation above the semicircle. There appears 
to be a maximum value of the circle radius a a t  which solutions may be found, for 
a given value of F ;  at this value of a, the free surface presumably forms a sharp crest 
above the semicircle, with sides that enclose an angle of 120O. 
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FIGURE 8. T w o  nonlinear solutions of type 3, for P = 2.1 and a = 1.32. The free surface is shown 
in the absence of surface tension, and for T = 0044. 

Two nonlinear type 3 solutions are shown in figure 8, for the case F = 2.1, a = 1.32. 
This is the largest value of a a t  which Newton’s method converged, for the solution 
with T = 0. The introduction of surface tension appears to have only slight effects 
on the free-surface profile. The linearized theory predicts upstream capillary waves 
of very small amplitude for T =+ 0, although no evidence of these exists in the 
nonlinear results. The maximum free-surface elevation for the T = 0.044 case is 
slightly greater than that obtained in the absence of surface tension. Newton’s method 
fails to converge for T > 0.044, so that our results are unable to indicate the nature 
of the influence of surface tension upon the formation of a crest at the free surface. 
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6. Summary and discussion 
Two-dimensional flow of an ideal fluid over a submerged semicircular cylinder has 

been discussed. The fluid is subject to the combined effects of gravity and surface 
tension. 

The linearized theory, derived under the assumption that the semicircular cylinder 
is of small radius, predicts the existence of three different types of solution, which 
have been referred to here as being of types 1 to 3. Solutions of type 1 possess an 
upstream capillary wavetrain, followed by a train of gravity waves downstream of 
the semicircle, and the free surface for type 2 solutions consists of a single depression 
above the obstacle. Type 3 solutions possess an upstream capillary wavetrain and 
an elevation of the free surface in the vicinity of the semicircular obstruction. 

The solution of the fully nonlinear problem confirms the existence of the above three 
classes of solution. For each class the ability of the present numerical scheme to 
compute solutions is ultimately limited by the formation of regions of very high 
curvature a t  the free surface. I n  the case of type 1 solutions these regions are 
presumably associated either with wave breaking a t  the crests, when the semicircle 
radius is large, or with the formation of bubbles enclosed by the troughs, for large 
surface tension. Nonlinear solutions of type 2 are most likely limited by the trapping 
of a bubble at the free surface in the region above the semicircle, for a suitably small 
value of the surface tension, and the failure of type 3 solutions is apparently 
associated with the formation of a crest a t  the surface, immediately above the 
semicircular obstruction. 

I n  the linearized theory the values of the flow parameters F ,  01 and T uniquely 
specify which of the three branches of solution will result. However, this apparently 
ceases to  be true of the nonlinear solution. The possibility of overlap between 
solutions of types 1 and 3 has already been discussed by Forbes & Schwartz (1982), 
and the results presented in this paper suggest a possible overlap between solutions 
of types 1 and 2. 

I n  addition to non-uniqueness of solutions due to overlap of the various different 
branches, there are presumably also inJiniteZy many different kinds of solution of 
type 1. This is a consequence of the existence of ‘Wilton’s ripples’ in the nonlinear 
solution, as described in $ 1 .  A countably infinite spectrum of solutions of type 1 is 
therefore to be expected, such that the waves downstream of the obstacle may 
generally possess a characteristic number of ‘dimples ’ per wavelength. Such solutions 
have not yet been observed with the present numerical scheme ; however, this is not 
a t  all surprising, in view of the small number of free-surface points per wavelength 
to  which we are presently restricted. 

To conclude, some remarks on the physical plausibility of the solutions obtained 
in this paper are appropriate. Forbes & Schwartz (1982) suggest that  the existence 
of type 3 solutions is doubtful ; presumably such supercritical solutions are unstable, 
and degenerate into configurations involving an hydraulic jump. Type 2 solutions 
would not normally be seen in water, although they could occur in fluids with 
enhanced surface tension, such as an oil slick close to  the shore. The existence of type 
1 solutions is not in doubt, although the capillary waves do not propagate infinitely 
fur upstream of the semicircle. I n  fact, for water, the effects of surface tension on the 
upstream portion of the flow are of the same order of magnitude as the effects of fluid 
viscosity, so that substantial damping of the upstream wavetrain may be expected. 
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